

# The health risk of exposure to heavy metals caused by the consumption of food products (rice, vegetables and bread)

Abdolkazem Neisi<sup>1</sup>, Arefeh Sepahvand<sup>2</sup>, Majid Farhadi<sup>3</sup>

<sup>1</sup> Department of Environmental Health, School of Public Health and Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran Email: kazemneisi@gmail.com

<sup>2</sup> Student Research Committee, Lorestan University of Medical sciences, Khorramabad, Iran, Email: arefehsepahvand21@gmail.com

<sup>3</sup> Student Research Committee, Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, and Ahvaz, Iran, E-mail: mirmajid100farhadi@gmail.com

**Abstract**

**Introduction:** Humans are always exposed to pollution, these pollutions mainly include heavy metals and organic substances. These metals can enter vegetables, rice and bread in different ways. Considering the per capita bread, vegetables and rice in the Iranian food basket, especially in Hoveyzeh and Azadegan plain, we decided to calculate the risk of exposure to heavy metals caused by the consumption of these products.

**Material and Method:** The study area in the current research is Hoveyzeh and Azadegan plains, which are two southern cities in Khuzestan province. The food products studied to measure heavy metals are all kinds of vegetables, rice and bread. In order to calculate the health risk assessment, the formulas of Hazard Quotient and cancer risk were used.

**Result:** The present study measured the concentration of five heavy metals (arsenic, cadmium, chromium, lead, and nickel) in food such as rice, vegetables, and bread. The five common types of rice consumed in Hoveyzeh and Azadegan plains are Anbar, Domsiah, Tarom, Indian, and Pakistani. Comparison of the non-carcinogenic risk of heavy metals in two groups of children and adults showed that HI and HQ were smaller than 1 for both groups. The highest HQ and HI for children were related to arsenic, which were 0.0127 and 0.0137 for Tarom rice, respectively. But the highest HQ and HI for adults were related to arsenic, which were 0.0059 and 0.0064 for Tarom rice, respectively. Comparing the carcinogenic risk of heavy metals in two groups of children and adults showed that CRs and ILCR for both groups were smaller than  $1*10^{-6}$ . Therefore, foods such as vegetables, rice and bread consumed in the study area do not have cancer risk in terms of toxic heavy metals.

**Conclusion:** The results of these investigations show that the soil or water used for planting vegetables, rice or wheat contained large amounts of heavy metals and did not meet the standards required for irrigation and planting of these crops.

**Keyword:** risk assessment, heavy metal, cancer risk, food products

## 1. Introduction

Humans are always exposed to pollution. These pollutions, which mainly include heavy metals and organic substances, have natural and anthropogenic origins(1). Heavy metals include a group of metals whose atomic number is more than 50 and whose specific gravity is more than 6 grams per cubic centimeter. Among the important characteristics of these metals, we can mention strength, toxicity, weight, density, and high atomic number(2). Among all heavy metals, lead, nickel, cadmium, and arsenic are extremely toxic and dangerous, and can harm the body even in low concentrations. They enter the body through food, air, drinking water, etc.; since they are toxic and accumulate in body tissues, they cause irreparable damage(3). Heavy metals can enter cereals and finally bread in different ways. Flour-producing factories can also be contaminated with heavy metals. Water contaminated with heavy metals used in the preparation of bread dough can be considered a source of pollution(4). The type of fuel in bakeries affects the deposition of heavy metals in bread. The location of bakeries in the city and close to the industrial centers of the city is one of the most important issues related to pollution(5). Since one of the important sources of heavy metals transmission is water and food contaminated with these elements, and bread is one of the main foods, by measuring the heavy metals in bread, it is possible to find out the presence of these factors and if they are higher than the standard(6). Rice is one of the most consumed grains in the world, especially in Asian countries. The per capita consumption of rice in Iran, Asia, and the world is about 41, 85, and 65 kg/year, respectively(7). Since the population of Iran is increasing, the demand for rice is increasing day by day. Rice cultivated in the contaminated area can affect human health. Possible pollution is transferred from agricultural soils to the crops that grow on these lands(8). In general, rice can absorb heavy metals and other toxic elements through its roots from polluted soils and even from the air(9). There are several factors in the consumption of heavy metals in crops such as rice. In addition to this, human activities such as industrial and agricultural use, excessive use of chemical fertilizers and pest control agents, and ineffective and insufficient pollution control can cause heavy metals to enter food(10).

Vegetables are an important part of a healthy diet. The main way of entering the body of heavy metals is through food, especially vegetables(11). Considering that irrigation with sewage has become a common thing, if the standards are not met, especially for products that are consumed raw, it can threaten people's health(12). Although vegetables provide an important part of carbohydrates, proteins, and vitamins for the body; it is necessary to explain that due to the high absorption rate of heavy metals, they can pose a threat to human health and ultimately pose risks to human society. By using chemical fertilizers and pesticides, farmers lead to the increase of these metals in the soil and plants(13).

Considering the per capita amount of bread, vegetables, and rice in the food basket of every Iranian and the possibility of their contamination in Hoveyzeh and Susangerd cities (probably due to the use of low-quality salt, the number of different sources of water used, the type of fuel used by each bakery for baking bread, the use chemical fertilizers containing phosphates during grain cultivation, as well as the location of bakeries in the city and close to the industrial centers and heavy traffic of the city, and other environmental factors), we decided to investigate the possibility of the presence of heavy and toxic metals in the food of the people of Hoveyzeh and Susangerd.

## 2. Material and Method

### 2.1. Study area

Azadegan plain is one of the cities of Khuzestan province and its center is Susangerd city. Its geographic coordinates are 31.55 degrees North and 48.17 degrees east. The height of this city is 15 meters above sea level. Azadegan Plain is located in northwest of Ahvaz and 55 km away from this city. Hoveyzeh is located in the southwest of Susangerd and Bostan is located in the northwest of Sosangerd, and the Karkhe River passes through it. The people of this city are Arabic-speaking and the main occupation of

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

85

86

87

88

89

90

91

|                                                                                                                                                                                                                                                                                                             |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| the people is agriculture. The population of this city is 51,431 people. Among the other cities of Azadegan plain, we can mention Bostan, Abu Hamizah, and Kot Sayednaim(14).                                                                                                                               | 92 |
|                                                                                                                                                                                                                                                                                                             | 93 |
| Hoveyzeh city is one of the cities of Khuzestan province with a population of 30,750 people. This city has two cities named Hoveyzeh and Rafi. The city of Hoveyzeh has a section named Nissan and two villages named Bani Saleh and Nissan. Most of the residents of this city are Arabs and speak Arabic. | 94 |
|                                                                                                                                                                                                                                                                                                             | 95 |
| 31.46 degrees north and 48.07 degrees east are the geographical coordinates of this city. Its area is 370,000 ha (15).                                                                                                                                                                                      | 96 |
|                                                                                                                                                                                                                                                                                                             | 97 |
|                                                                                                                                                                                                                                                                                                             | 98 |

## 2.2. Sampling and preparation of samples

The sampling of vegetables was done randomly in autumn and winter seasons. Vegetable samples included basil, radish, watercress, and leek. Then about one kilogram of each was separated as a sample. After washing the samples with distilled water, we dried them in an oven at 105°C for 24 hours and weighed them. Ultimately, we perform acid digestion for all samples, inject them into the ICP-OES device, and report the amount.

Five types of rice were selected to calculate the risk assessment of the consumption of heavy metals in rice. The samples were randomly selected. The studied kinds of rice included Anbar, Tarom, Pakistani, Indian, and black tail rice. In order to measure the heavy metals in the sample, first one kilogram of them is washed with distilled water and dried in an oven at a temperature of 105 degrees Celsius for 48 hours. We grind 0.5 grams of a dried rice sample and then perform acid digestion on it. In the end, we inject the digested sample into the ICP-OES device and report its amount.

Sampling of bread was also done randomly from bakeries in the city. The types of bread studied included Barbari, Lavash, and Sangak. To measure the heavy metals in them, we first collect one kilogram of bread from each bakery. Then we dry them in the oven at 105 degrees Celsius and chop them separately. 25 grams of each of the breads are digested with nitric acid and at the end we inject them into the ICP device and report their amount.

## 2.3. Average Daily Dose

The average daily intake dose (ADDs) of heavy metals from the consumption of food such as bread, vegetables and rice is obtained in terms of (mg/kg.d) from equation 1. Table 1 also shows the parameters for calculating ADDs

$$ADD = \frac{C * IR * EF * ED}{At * BW} \left( \frac{mg}{kg} \cdot day \right) \quad Eq \ (1)$$

Table1: ADDs calculation parameters

| Concentration                    | C  | mg       | -   |
|----------------------------------|----|----------|-----|
| Ingestion Rate                   | IR | (mg/day) | 82  |
| Exposure Frequency               | EF | (day)    | 365 |
| duration of human exposure       | ED | (year)   | 60  |
| Averaging time of human exposure | At | (year)   | 70  |
| Body Weight                      | BW | (kg)     | 70  |

## Non-carcinogenic risks

In fact, HQ is the ratio between the amount of exposure to heavy metals and their reference dose (RfD), which is used to express non-toxic effects (Eq 2). The RfD is different for each pollutant. For example, its amount for the consumption of arsenic, cadmium, nickel and lead through digestion is equal to 0.0003, 0.001, 0.046, and 0.02 respectively. From the sum of HQ, the hazard index (HI) is obtained (Eq

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3). If this value is less than 1, there is no non-carcinogenic risk, while HI >1 means that there is a non-carcinogenic risk(16).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 129<br>130                                                                                                                                                                                |
| $HQ = \frac{ADD}{RfD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 131                                                                                                                                                                                       |
| $HI = \sum_1^i HQ_s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 132                                                                                                                                                                                       |
| <b>Carcinogenic risks</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 133                                                                                                                                                                                       |
| Carcinogenic risk (CR) for each carcinogen is obtained by multiplying ADD by slope factor (SF) (Eq 4). SF values for arsenic, cadmium, nickel, and lead are 1.5, 0.38, 1.7, and 0.0085, respectively. The incremental lifetime cancer risk (ILCR) is obtained from the sum of carcinogenic risks(17). (Eq 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 134<br>135<br>136                                                                                                                                                                         |
| $CR = ADD * SF$ Equation (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 137                                                                                                                                                                                       |
| CR: Carcinogenic or cancer risks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 138                                                                                                                                                                                       |
| SF: slope factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 139                                                                                                                                                                                       |
| $ILCR = \sum_1^i CR$ Equation (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140                                                                                                                                                                                       |
| ILCR < 1*10 <sup>-6</sup> : There is no risk of carcinogenesis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 141                                                                                                                                                                                       |
| ILCR > 1*10 <sup>-4</sup> : There is a risk of carcinogenesis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 142                                                                                                                                                                                       |
| 1*10 <sup>-6</sup> < ILCR < 1*10 <sup>-4</sup> : The risk created is acceptable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 143                                                                                                                                                                                       |
| <b>3. Result</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 145                                                                                                                                                                                       |
| <b>3.1. Heavy metal Concentration</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146                                                                                                                                                                                       |
| The present study measured the concentration of five heavy metals (arsenic, cadmium, chromium, lead, and nickel) in food such as rice, vegetables, and bread. The five common types of rice consumed in Hoveyzeh and Azadegan plains are Anbar, Domsiah, Tarom, Indian, and Pakistani. It should be noted that the studied population mainly uses amber rice. Table 2 shows the concentration of metals in food. This table shows that the amount of arsenic in five types of consumed rice was higher than the standard limit determined by the National Standard Institute of Iran (0.15 mg/kg). Exposure to arsenic caused by skin contact or food consumption even in small amounts (0.05 mg/kg) can increase the risk of skin, lung, urinary tract, and bladder cancer(18). The high concentration of arsenic in rice can be related to the irrigation of fields with water from wells(19). The concentration of arsenic in consumed rice was reported in the following order: Tarom > Domsiah > Anbar > Indian > Pakistani. None of the consumed rice had exceeded the permissible limit of cadmium. The national standard of Iran has declared the permissible limit of cadmium in consumed rice to be 0.6 mg/kg(20). The lowest concentration of Cd was reported in Pakistani rice (0.18 mg/kg) and the highest in Tarom rice (0.55 mg/kg). The introduction of cadmium into the food chain can lead to serious damage to the lungs and bones, anemia and sometimes increased blood pressure(21). Rice is a plant that can easily absorb cadmium through its roots; its absorption takes place under conditions of increased oxidation and reduction potential and in the form of divalent cadmium(22). The concentration of Ni and Cr in none of the consumed rice samples did not exceed the permissible limit of the Iranian national standard (10 mg/kg). Chromium is also needed in trivalent form as a vital element for the human body, while hexavalent chromium will be very toxic and harmful(23). Nickel is one of the other harmful heavy metals that causes disturbances in the biological activities of cells, delay in growth, reduction of hematopoiesis and interference in iron absorption(24). Nickel metabolites can cause skin inflammations and cardiovascular disorders. Nickel can also have a teratogenic and malformation effect(25). But the concentration of Pb in all consumed rice (except Indian rice) exceeded the permissible limit. Anbar rice had the highest concentration of Pb and Indian rice had the lowest. Pb is one of the heavy metals that is usually found abundantly in grains and rice. Many researchers have reported its high amount in agricultural products. Of course, plant species have differences in the accumulation, absorption and tolerance of heavy metals(26). The use of | 147<br>148<br>149<br>150<br>151<br>152<br>153<br>154<br>155<br>156<br>157<br>158<br>159<br>160<br>161<br>162<br>163<br>164<br>165<br>166<br>167<br>168<br>169<br>170<br>171<br>172<br>173 |

sewage sludge and phosphate fertilizers in agricultural lands and residues from the consumption of fossil fuels and irrigation of agricultural crops with sewage are among the factors that can cause Pb contamination(27). The decreasing trend of Pb concentration in consumed rice is as follows: Anbar>Domsiah>Tarom>Pakistani> Indian

In the present study, four types of vegetables (cress, chive, basil, and radish), which are often used by the people of the study area, were selected as samples. The concentration of As, Cd, and Pb in all four types of vegetables exceeded the standard limit. According to the standard of the World Health Organization (WHO) and the Food and Agriculture Organization (FAO), the concentration of As, CD and Pb should be less than 0.7, 0.05 and 0.1 mg/kg of vegetables, respectively. The use of chemical fertilizers can add an average of 0.0008 to 0.93 mg of lead per kilogram and also 0.0005 to 0.5 mg of cadmium per kilogram of soil; this amount added to the soil can be absorbed by plants and vegetables over time(28). Among vegetables, Radish has the highest concentration of As, Pb, Cr, and Ni, while Cress has the lowest amount. The decreasing distribution of As and Pb is as follows. Radish (5.36)>Chive (4.61)>Basil (3.15)>Cress (2.4). One of the most important factors of high levels of heavy metals in vegetables is the use of insecticides, fungicides and pesticides, which are absorbed through the stems and leaves of plants in addition to the roots(29). In a research conducted by Cheng et al. under the title of using wastewater and the accumulation of heavy metals in soil, the results indicated that there is a correlation between heavy metals in soil and plant tissues(30).

In the present study, three types of bread, Barbari, Sangak, and Lavash, were sampled. The results of the tests showed that Lavash bread has the highest amount As (1.31 mg/kg), Cd (0.2 mg/kg), and Ni (1.2 mg/kg), while it also had the lowest amount of Cr (0.056 mg/kg). The standard limit of As, Cd, Pb, and Ni in consumed bread is 0.15, 0.15, 0.15, and 10 mg/kg, respectively. The highest concentration of Cr (1.44 mg/kg) and the lowest concentration of Pb (0.056 mg/kg) were observed in Barbari bread. The concentration of arsenic in Barbari and Lavash bread, the concentration of cadmium in Lavash bread, as well as the concentration of lead in all breads, exceeded the limits declared by health organizations. The contamination of agricultural products with heavy metals is significant due to the cumulative effects of heavy metals and the adverse effects caused by them in human societies, as well as the threat to food security(31). Exceeding the average concentration of Cd, As, and Pb element from the standard limit can be considered as soil pollution due to geological origin, excessive use of chemical fertilizers, especially phosphate fertilizers, use of insecticides, use of urban sewage for land irrigation, traffic of vehicles on the side of the road (cultivated wheat) (32). During a research conducted with the aim of evaluating heavy metals in Hamadan bread, it was found that the average of cadmium, lead and nickel has increased due to wear and tear of bakery equipment(33).

Table2: Concentration of heavy metals in food

| Food      | Type      | As (PPM) | Cd    | Cr    | Ni    | Pb           |
|-----------|-----------|----------|-------|-------|-------|--------------|
| Rice      | Anbar     | 1.67     | 0.36  | 0.37  | 0.001 | <b>0.95</b>  |
|           | Domsiah   | 2.53     | 0.48  | 0.24  | 0.014 | <b>0.35</b>  |
|           | Tarom     | 2.73     | 0.55  | 0.13  | 0.008 | <b>0.24</b>  |
|           | Hendi     | 1.5      | 0.22  | 0.005 | 0.004 | <b>0.012</b> |
|           | Pakistani | 1.4      | 0.18  | 0.019 | 0.061 | <b>0.2</b>   |
| Vegetable | Cress     | 2.4      | 0.199 | 0.457 | 0.78  | <b>0.163</b> |
|           | Chive     | 4.61     | 0.16  | 0.998 | 1.09  | <b>0.321</b> |
|           | Basil     | 3.15     | 0.13  | 1.22  | 1.13  | <b>0.256</b> |
|           | Radish    | 5.369    | 0.254 | 1.36  | 2.5   | <b>0.361</b> |
|           | Barbari   | 0.16     | 0.13  | 1.44  | 0.8   | <b>0.054</b> |
| Bread     | Sangak    | 0.11     | 0.15  | 1.12  | 0.61  | <b>0.36</b>  |
|           | Lavash    | 1.31     | 0.2   | 0.056 | 1.2   | <b>0.28</b>  |

|     |                                                                                                              |
|-----|--------------------------------------------------------------------------------------------------------------|
| 210 |                                                                                                              |
| 211 |                                                                                                              |
| 212 | <b>3.2. Non-carcinogenic risk assessment</b>                                                                 |
| 213 | The non-carcinogenic risk results obtained from the present study are shown in Table 3. Comparison of        |
| 214 | the non-carcinogenic risk of heavy metals in two groups of children and adults showed that HI and HQ         |
| 215 | were smaller than 1 for both groups; Therefore, foods such as vegetables, rice, and bread consumed in        |
| 216 | the study area do not pose a non-carcinogenic risk in terms of toxic heavy metals. The highest HQ for        |
| 217 | kids was related to arsenic, which was 0.0127, 0.0045, and 0.0061 for Tarom rice, radish, and Lavash         |
| 218 | bread, respectively. The highest value of HI for kids was related to arsenic, which was 0.0137, 0.0048       |
| 219 | and 0.0016 for Tarom rice, radish and Barbari bread, respectively. The highest HQ for adults was related     |
| 220 | to arsenic, which was 0.0059, 0.0017, and 0.0028 for Tarom rice, radish, and Lavash bread, respectively.     |
| 221 | The highest value of HI for adults was related to arsenic, which was 0.0064, 0.0018, and 0.0031 for          |
| 222 | Tarom rice, radish, and Lavash bread, respectively.                                                          |
| 223 | The non-carcinogenic risk for kids is as follows: Tarom (0.0127) > Domsiah (0.0118) > Anbar (0.0078)         |
| 224 | > Indian (0.0070) > Pakistani (0.0065)                                                                       |
| 225 | The non-carcinogenic risk for adults is as follows: Tarom (0.0059) > Domsiah (0.0055) > Anbar (0.0036)       |
| 226 | > Indian (0.0032) > Pakistani (0.0030)                                                                       |
| 227 | According to the USEPA guidelines, because the value of HI in all kinds of vegetables, rice and bread        |
| 228 | is less than one, so the non-carcinogenic risk does not threaten the health of consumers(34). In Qureshi     |
| 229 | et al.'s study, the concentration of heavy metals in all vegetables was lower than the standards; therefore, |
| 230 | in this study, the low absorption of heavy metals by vegetables shows that the health risks for humans       |
| 231 | are negligible(35). Also, in the study of Woldetsadik et al., the concentration of heavy metals in all       |
| 232 | vegetables was lower than the standard level. On the other hand, the concentration of lead was higher        |
| 233 | than the standard, which is due to the irrigation of vegetables with sewage(36). In the study by Roba et     |
| 234 | al., THQ for metals zinc, copper, lead and cadmium were higher than one, indicating that consumers           |
| 235 | may experience potential health risks(37).                                                                   |
| 236 | According to Mousavi et al.'s research, the hazard quotient of the metals cadmium, lead and nickel in        |
| 237 | cultivated rice of Khuzestan province was higher than 1; These results show that the consumption of          |
| 238 | rice cultivated in this province increases the non-carcinogenic potential(38). Hazard Quotient of heavy      |
| 239 | metals cadmium, lead and nickel in rice of Hunan region in China is reported to be 2.29, 0.045 and           |
| 240 | 0.216, respectively, and cadmium has non-carcinogenic risk potential for humans(39). The risk of heavy       |
| 241 | metal contamination of soil, plant and rice in the east coast of India was investigated. The health index    |
| 242 | (HI) values of adults (1.561) and children (1.360) show the adverse effect on their health in the near       |
| 243 | future(40).                                                                                                  |
| 244 |                                                                                                              |
| 245 |                                                                                                              |
| 246 |                                                                                                              |
| 247 |                                                                                                              |
| 248 |                                                                                                              |
| 249 |                                                                                                              |
| 250 |                                                                                                              |
| 251 |                                                                                                              |
| 252 |                                                                                                              |
| 253 |                                                                                                              |
| 254 |                                                                                                              |
| 255 |                                                                                                              |

Table3: Non-carcinogenic risk results

256

| Food      | Type      | HQs (Kids) |                |               |               |               | HI     |
|-----------|-----------|------------|----------------|---------------|---------------|---------------|--------|
|           |           | As         | Cd             | Cr            | Ni            | Pb            |        |
| Rice      | Anbar     | 0.0078     | 0.0005         | 0.0001        | $7*10^{-7}$   | 0.0003        | 0.0088 |
|           | Domsiah   | 0.0118     | 0.0006         | 0.0001        | $9.8*10^{-6}$ | 0.0001        | 0.0127 |
|           | Tarom     | 0.0127     | 0.0007         | $6*10^{-5}$   | $5.6*10^{-6}$ | $9.6*10^{-5}$ | 0.0137 |
|           | Hendi     | 0.0070     | 0.0003         | $2.3*10^{-6}$ | $2.8*10^{-6}$ | $4.8*10^{-6}$ | 0.0073 |
|           | Pakistani | 0.0065     | 0.0002         | $8.9*10^{-6}$ | $4.2*10^{-6}$ | $8*10^{-5}$   | 0.0069 |
| Vegetable | Cress     | 0.0020     | $5.09*10^{-5}$ | $3.9*10^{-5}$ | $9.9*10^{-6}$ | $1.1*10^{-5}$ | 0.0021 |
|           | Chive     | 0.0039     | $4.09*10^{-5}$ | $8.5*10^{-5}$ | $1.3*10^{-5}$ | $2.3*10^{-5}$ | 0.0040 |
|           | Basil     | 0.0026     | $3.32*10^{-5}$ | 0.0001        | $1.4*10^{-5}$ | $1.8*10^{-5}$ | 0.0028 |
|           | Radish    | 0.0045     | $6.49*10^{-5}$ | 0.0001        | $3.1*10^{-5}$ | $2.6*10^{-5}$ | 0.0048 |
| Bread     | Barbari   | 0.0007     | 0.0001         | 0.0006        | $5.6*10^{-5}$ | $2.1*10^{-5}$ | 0.0016 |
|           | Sangak    | 0.0005     | 0.0002         | 0.0005        | $4.2*10^{-5}$ | 0.0001        | 0.0014 |
|           | Lavash    | 0.0061     | 0.0002         | $2.6*10^{-5}$ | $8.4*10^{-5}$ | 0.0001        | 0.0006 |

257

| Food      | Type      | HQs (Adult) |               |               |               |               | HI     |
|-----------|-----------|-------------|---------------|---------------|---------------|---------------|--------|
|           |           | As          | Cd            | Cr            | Ni            | Pb            |        |
| Rice      | Anbar     | 0.0036      | 0.0002        | $8.1*10^{-5}$ | $3.2*10^{-7}$ | 0.0001        | 0.0041 |
|           | Domsiah   | 0.0055      | 0.0003        | $5.2*10^{-5}$ | $4.6*10^{-6}$ | $6.5*10^{-5}$ | 0.0059 |
|           | Tarom     | 0.0059      | 0.0003        | $2.8*10^{-5}$ | $2.6*10^{-6}$ | $4.5*10^{-5}$ | 0.0064 |
|           | Hendi     | 0.0032      | 0.0001        | $1*10^{-5}$   | $1.3*10^{-6}$ | $2.2*10^{-6}$ | 0.0034 |
|           | Pakistani | 0.0030      | 0.0001        | $4.1*10^{-6}$ | $2*10^{-6}$   | $3.7*10^{-5}$ | 0.0032 |
| Vegetable | Cress     | 0.0007      | $1.9*10^{-5}$ | $1.5*10^{-5}$ | $3.8*10^{-6}$ | $4.5*10^{-6}$ | 0.0008 |
|           | Chive     | 0.0015      | $1.5*10^{-5}$ | $3.2*10^{-5}$ | $5.3*10^{-6}$ | $9*10^{-6}$   | 0.0015 |
|           | Basil     | 0.0010      | $1.2*10^{-5}$ | $4*10^{-5}$   | $5.5*10^{-6}$ | $7.2*10^{-6}$ | 0.0011 |
|           | Radish    | 0.0017      | $2.5*10^{-5}$ | $4.4*10^{-5}$ | $1.2*10^{-5}$ | $1*10^{-6}$   | 0.0018 |
| Bread     | Barbari   | 0.0003      | $8.5*10^{-5}$ | 0.0003        | $2.6*10^{-5}$ | $1*10^{-5}$   | 0.0007 |
|           | Sangak    | 0.0002      | $9.8*10^{-5}$ | 0.0002        | $2*10^{-5}$   | $6.7*10^{-5}$ | 0.0006 |
|           | Lavash    | 0.0028      | 0.0001        | $1.2*10^{-5}$ | $3.9*10^{-5}$ | $5.2*10^{-5}$ | 0.0031 |

258

259

260

261

### 3.3. Carcinogenic risk assessment

262

The carcinogenic risk results obtained from the present study are shown in Table 4. Comparing the carcinogenic risk of heavy metals in two groups of children and adults showed that CRs and ILCR for both groups were smaller than  $1*10^{-6}$ . Therefore, foods such as vegetables, rice and bread consumed in the study area do not have cancer risk in terms of toxic heavy metals. The highest CRs for children were related to arsenic, which were  $4.1*10^{-7}$ ,  $1.4*10^{-7}$  and  $1.9*$

$10^{-7}$  for Tarom rice, radish and Lavash bread, respectively. The highest amount of ILCR for children was related to arsenic, which was  $4.5*10^{-7}$ ,  $2.3*10^{-7}$  and  $4.1*10^{-7}$  for Tarom rice, radish and Lavash bread, respectively. The highest CRs for adults were related to arsenic, which were  $9.6*10^{-7}$ ,  $2.8*10^{-7}$  and  $4.6*10^{-7}$  for Tarom rice, radish, and Lavash bread, respectively. The highest ILCR value for adults was related to arsenic, which was  $1.1*10^{-6}$ ,  $4.6*10^{-7}$  and  $9.6*10^{-7}$  for Tarom rice, radish and pita bread, respectively.

The risk of carcinogenesis for kids is as follows:

Tarom ( $4.1*10^{-7}$ ) > Domsiah ( $3.8*10^{-7}$ ) > Anbar ( $2.5*10^{-7}$ ) > Indian ( $2.2*10^{-7}$ ) > Pakistani ( $2.1*10^{-7}$ )

The risk of carcinogenesis for adults is as follows: 276  
 Tarom ( $9.6 \times 10^{-7}$ ) > Domsiah ( $8.9 \times 10^{-7}$ ) > Anbar ( $5.8 \times 10^{-7}$ ) > Indian ( $5.2 \times 10^{-7}$ ) > Pakistani ( $4.9 \times 10^{-7}$ ) 277  
 In a study in Thailand, they showed that vegetables grown in landfills have carcinogenic and 278  
 non-carcinogenic risks, and the highest carcinogenic risk is related to arsenic and lead 279  
 metals(41). In the study of Sultana et al., the results of the study showed that the region of 280  
 Bangladesh is unsuitable for growing vegetables due to the risk of consuming more heavy 281  
 metals that affect food safety. Manganese, lead, and iron elements are the most non- 282  
 carcinogenic heavy metals; while cadmium causes the greatest risk of cancer(42). The 283  
 carcinogenic risk of cadmium, lead and nickel in the samples of rice grown in Khuzestan 284  
 province (Iran) was more than  $10^{-4}$ , which indicates that the consumption of rice grown in this 285  
 province has the potential of carcinogenic risk(43). The amount of carcinogenic risk of 286  
 cadmium and nickel metals in rice of Hunan region in China is reported to be 0.0343 and 287  
 0.0039, respectively, which was higher than  $10^{-4}$ , and the consumption of this rice has the 288  
 potential to cause cancer in humans(44). 289  
 290

Table 4: Carcinogenesis risk results 291

| CRs (Kids) |           |                      |                      |                       |                      | ILCR                  |                      |
|------------|-----------|----------------------|----------------------|-----------------------|----------------------|-----------------------|----------------------|
| Food       | Type      | As                   | Cd                   | Cr                    | Ni                   |                       |                      |
| Rice       | Anbar     | $2.5 \times 10^{-7}$ | $1.3 \times 10^{-8}$ | $1.8 \times 10^{-8}$  | $1.7 \times 10^{-9}$ | $8.1 \times 10^{-10}$ | $2.8 \times 10^{-7}$ |
|            | Domsiah   | $3.8 \times 10^{-7}$ | $1.8 \times 10^{-8}$ | $.12 \times 10^{-8}$  | $2.3 \times 10^{-8}$ | $2.9 \times 10^{-10}$ | $4.3 \times 10^{-7}$ |
|            | Tarom     | $4.1 \times 10^{-7}$ | $2.1 \times 10^{-8}$ | $6.5 \times 10^{-9}$  | $.13 \times 10^{-8}$ | $2 \times 10^{-10}$   | $4.5 \times 10^{-7}$ |
|            | Hendi     | $2.2 \times 10^{-7}$ | $8.3 \times 10^{-9}$ | $2.5 \times 10^{-10}$ | $6.8 \times 10^{-9}$ | $1 \times 10^{-11}$   | $2.4 \times 10^{-7}$ |
|            | Pakistani | $2.1 \times 10^{-7}$ | $6.8 \times 10^{-9}$ | $9.5 \times 10^{-10}$ | $1 \times 10^{-8}$   | $1.7 \times 10^{-10}$ | $2.3 \times 10^{-7}$ |
| Vegetable  | Cress     | $6.5 \times 10^{-8}$ | $1.3 \times 10^{-9}$ | $4.1 \times 10^{-9}$  | $2.4 \times 10^{-8}$ | $2.5 \times 10^{-11}$ | $9.5 \times 10^{-8}$ |
|            | Chive     | $1.2 \times 10^{-7}$ | $1.1 \times 10^{-9}$ | $9.1 \times 10^{-9}$  | $3.3 \times 10^{-8}$ | $4.9 \times 10^{-11}$ | $1.7 \times 10^{-7}$ |
|            | Basil     | $8.6 \times 10^{-8}$ | $9 \times 10^{-10}$  | $.11 \times 10^{-8}$  | $3.5 \times 10^{-8}$ | $3.9 \times 10^{-11}$ | $1.3 \times 10^{-7}$ |
|            | Radish    | $1.4 \times 10^{-7}$ | $1.7 \times 10^{-9}$ | $.12 \times 10^{-8}$  | $7.7 \times 10^{-8}$ | $5.6 \times 10^{-11}$ | $2.3 \times 10^{-7}$ |
| Bread      | Barbari   | $2.4 \times 10^{-8}$ | $4.9 \times 10^{-9}$ | $7.2 \times 10^{-8}$  | $1.3 \times 10^{-7}$ | $4.6 \times 10^{-11}$ | $2.3 \times 10^{-7}$ |
|            | Sangak    | $1.6 \times 10^{-8}$ | $5.7 \times 10^{-9}$ | $5.6 \times 10^{-8}$  | $1 \times 10^{-7}$   | $3 \times 10^{-10}$   | $1.8 \times 10^{-7}$ |
|            | Lavash    | $1.9 \times 10^{-7}$ | $7.6 \times 10^{-9}$ | $2.8 \times 10^{-9}$  | $2 \times 10^{-7}$   | $2.3 \times 10^{-10}$ | $4.1 \times 10^{-7}$ |

292

| CRs (Adult) |           |                      |                      |                       |                      | ILCR                  |                       |
|-------------|-----------|----------------------|----------------------|-----------------------|----------------------|-----------------------|-----------------------|
| Food        | Type      | As                   | Cd                   | Cr                    | Ni                   |                       |                       |
| Rice        | Anbar     | $5.8 \times 10^{-7}$ | $3.2 \times 10^{-8}$ | $4.3 \times 10^{-8}$  | $3.9 \times 10^{-9}$ | $1.8 \times 10^{-9}$  | $6.6 \times 10^{-7}$  |
|             | Domsiah   | $8.9 \times 10^{-7}$ | $4.2 \times 10^{-8}$ | $2.8 \times 10^{-8}$  | $5.5 \times 10^{-8}$ | $6.9 \times 10^{-10}$ | $1.1 \times 10^{-6}$  |
|             | Tarom     | $9.6 \times 10^{-7}$ | $4.9 \times 10^{-8}$ | $1.5 \times 10^{-8}$  | $3.1 \times 10^{-8}$ | $4.7 \times 10^{-10}$ | $1.05 \times 10^{-6}$ |
|             | Hendi     | $5.2 \times 10^{-7}$ | $1.9 \times 10^{-8}$ | $5.8 \times 10^{-10}$ | $1.5 \times 10^{-8}$ | $2.3 \times 10^{-11}$ | $5.6 \times 10^{-7}$  |
|             | Pakistani | $4.9 \times 10^{-7}$ | $1.6 \times 10^{-8}$ | $2.2 \times 10^{-9}$  | $2.4 \times 10^{-8}$ | $3.9 \times 10^{-10}$ | $5.3 \times 10^{-7}$  |
| Vegetable   | Cress     | $1.2 \times 10^{-7}$ | $2.6 \times 10^{-9}$ | $8 \times 10^{-9}$    | $4.6 \times 10^{-8}$ | $4.8 \times 10^{-11}$ | $1.8 \times 10^{-7}$  |
|             | Chive     | $2.4 \times 10^{-7}$ | $2.1 \times 10^{-9}$ | $1.7 \times 10^{-8}$  | $6.5 \times 10^{-8}$ | $9.6 \times 10^{-11}$ | $3.2 \times 10^{-7}$  |
|             | Basil     | $1.6 \times 10^{-7}$ | $1.7 \times 10^{-9}$ | $2.1 \times 10^{-8}$  | $6.7 \times 10^{-8}$ | $7.6 \times 10^{-11}$ | $2.5 \times 10^{-7}$  |
|             | Radish    | $2.8 \times 10^{-7}$ | $3.4 \times 10^{-9}$ | $2.3 \times 10^{-8}$  | $1.4 \times 10^{-7}$ | $1 \times 10^{-10}$   | $4.6 \times 10^{-7}$  |
| Bread       | Barbari   | $5.6 \times 10^{-8}$ | $1.1 \times 10^{-8}$ | $1.6 \times 10^{-7}$  | $3.1 \times 10^{-7}$ | $1 \times 10^{-10}$   | $5.5 \times 10^{-7}$  |
|             | Sangak    | $3.8 \times 10^{-8}$ | $1.3 \times 10^{-8}$ | $1.3 \times 10^{-7}$  | $2.4 \times 10^{-7}$ | $7.1 \times 10^{-10}$ | $4.2 \times 10^{-7}$  |
|             | Lavash    | $4.6 \times 10^{-7}$ | $1.7 \times 10^{-8}$ | $6.5 \times 10^{-9}$  | $4.7 \times 10^{-7}$ | $5.5 \times 10^{-10}$ | $9.6 \times 10^{-7}$  |

293

294

|                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>4. Conclusion</b>                                                                                                                                                                                                                                                                                                                                                                                                          | 295 |
| The results of these investigations show that the soil or water used for planting vegetables, rice or wheat contained large amounts of heavy metals and did not meet the standards required for irrigation and planting of these crops. Therefore, there is a need for related organizations to carry out regulatory measures. In this regard, in order to reduce food contamination, the following suggestions are provided: | 296 |
| • Training farmers in the field of correct irrigation and fertilization.                                                                                                                                                                                                                                                                                                                                                      | 297 |
| • Teaching farmers and people about the harmful effect of heavy metals on the body and ways to control and reduce it.                                                                                                                                                                                                                                                                                                         | 298 |
| • Substitute vegetables with lower absorption of heavy metals.                                                                                                                                                                                                                                                                                                                                                                | 299 |
| • Identifying sources of pollution and controlling its reduction.                                                                                                                                                                                                                                                                                                                                                             | 300 |
| • Inspection and maintenance of water and soil resources used for planting vegetables by health and environmental officials.                                                                                                                                                                                                                                                                                                  | 301 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 302 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 303 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 304 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 305 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 306 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 307 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 308 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 309 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 310 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 311 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 312 |
| <b>Authorship contribution:</b>                                                                                                                                                                                                                                                                                                                                                                                               | 313 |
| <b>MF:</b> Data collection, Writing original draft preparation; <b>AS:</b> Formal analysis; <b>AN:</b> Conceptualization, methodology, supervision, acquisition, project administration.                                                                                                                                                                                                                                      | 314 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 315 |
| <b>Funding:</b> This article was extracted from Ph.D. thesis of Majid Farhadi, and has been financially supported by Ahvaz Jundishapur University of Medical Sciences (Grant no ETRC-0114).                                                                                                                                                                                                                                   | 316 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 317 |
| <b>Declaration of Competing Interest:</b> The authors declare no conflict of interest.                                                                                                                                                                                                                                                                                                                                        | 318 |
| <b>Acknowledgment:</b> This article was extracted from Ph.D. thesis of Majid Farhadi, and has been financially supported by Ahvaz Jundishapur University of Medical Sciences (Grant no ETRC-0114).The authors would like to thank from Hoveyzeh cohort center                                                                                                                                                                 | 319 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 320 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 321 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 322 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 323 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 324 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 325 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 326 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 327 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 328 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 329 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 330 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 331 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 332 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 333 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 334 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 335 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 336 |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | 337 |

|                                                                                                                                                                                                                                                                                                     |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Reference                                                                                                                                                                                                                                                                                           | 338 |
|                                                                                                                                                                                                                                                                                                     | 339 |
| .1 Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. <i>Journal of chemistry</i> . 2019;2019.                                                                                                  | 340 |
| .2 Bradl H. Heavy metals in the environment: origin, interaction and remediation: Elsevier; 2005.                                                                                                                                                                                                   | 341 |
| .3 Dahiya V. Heavy metal toxicity of drinking water: A silent killer. <i>GSC Biological and Pharmaceutical Sciences</i> . 2022;19(1):020-5.                                                                                                                                                         | 342 |
| .4 Pirsahab M, Hadei M, Sharifi K. Human health risk assessment by Monte Carlo simulation method for heavy metals of commonly consumed cereals in Iran-Uncertainty and sensitivity analysis. <i>Journal of Food Composition and Analysis</i> . 2021;96:103697.                                      | 343 |
| .5 Hashemi M, Salehi T, Aminzare M, Raeisi M, Afshari A. Contamination of toxic heavy metals in various foods in Iran: a review. <i>Journal of Pharmaceutical Sciences and Research</i> . 2017;9(10):1692-7.                                                                                        | 344 |
| .6 Wei W, Xin Z, Geng Y, Li J, Yao M, Guo Y, et al. The reallocation effect of China's provincial power transmission and trade on regional heavy metal emissions. <i>IScience</i> . 2021;24(6).                                                                                                     | 345 |
| .7 Nemati-Mansour S, Hudson-Edwards KA, Mohammadi A, Asghari Jafarabadi M, Mosaferi M. Environmental occurrence and health risk assessment of arsenic in Iran: a systematic review and Meta-analysis. <i>Human and Ecological Risk Assessment: An International Journal</i> . 2022;28(5-6):683-710. | 346 |
| .8 Ali W, Mao K, Zhang H, Junaid M, Xu N, Rasool A, et al. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. <i>Journal of hazardous materials</i> . 2020;397:122720.   | 347 |
| .9 Kwon JC, Nejad ZD, Jung MC. Arsenic and heavy metals in paddy soil and polished rice contaminated by mining activities in Korea. <i>Catena</i> . 2017;148:92-100.                                                                                                                                | 348 |
| .10 Emenike CU, Jayanthi B, Agamuthu P, Fauziah S. Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. <i>Environmental Reviews</i> . 2018;26(2):156-68.                                                         | 349 |
| .11 Kumar S, Prasad S, Yadav KK, Shrivastava M, Gupta N, Nagar S, et al. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches-A review. <i>Environmental research</i> . 2019;179:108792.                                                   | 350 |
| .12 Singh A. A review of wastewater irrigation: Environmental implications. <i>Resources, Conservation and Recycling</i> . 2021;168:105454.                                                                                                                                                         | 351 |
| .13 Munir N, Jahangeer M, Bouyahya A, El Omari N, Ghchime R, Balahbib A, et al. Heavy metal contamination of natural foods is a serious health issue: a review. <i>Sustainability</i> . 2021;14(1):1.61                                                                                             | 352 |
| .14 Perletta G. Insicurezza idrica come causa di trasformazioni nello spazio e fonte di dissenso politico: il caso del Khuzestan iraniano. <i>Insicurezza idrica come causa di trasformazioni nello spazio e fonte di dissenso politico: il caso del Khuzestan iraniano</i> . 2020:91-117.          | 353 |
| .15 Cheraghian B, Hashemi SJ, Hosseini SA, Poustchi H, Rahimi Z, Sarvandian S, et al. Cohort profile: The Hoveyzeh Cohort Study (HCS): A prospective population-based study on non-communicable diseases in an Arab community of Southwest Iran. <i>Med J Islam Repub Iran</i> . 2020;34:141.       | 354 |
| .16 Ashayeri NY, Keshavarzi B. Geochemical characteristics, partitioning, quantitative source apportionment, and ecological and health risk of heavy metals in sediments and water: A case study in Shadegan Wetland, Iran. <i>Marine pollution bulletin</i> . 2019;149:110495.                     | 355 |
| .17 Ijeoma KH, Chima OE, Daniel A, Ayotunde OS. Health risk assessment of heavy metals in some rice brands imported into Nigeria. <i>Communication in Physical Sciences</i> . 2010;5(1, 2, 3.).                                                                                                     | 356 |
| .18 Mandal P. An insight of environmental contamination of arsenic on animal health. <i>Emerging Contaminants</i> . 2017;3(1):17-22.                                                                                                                                                                | 357 |
| .19 Javed A, Farooqi A, Baig ZU, Ellis T, van Geen A. Soil arsenic but not rice arsenic increasing with arsenic in irrigation water in the Punjab plains of Pakistan. <i>Plant and soil</i> . 2020;450:601-11.                                                                                      | 358 |

|     |                                                                                                                                                                                                                                                                                                        |                   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| .20 | Sharafi K, Nodehi RN, Mahvi AH, Pirsahab M, Nazmara S, Mahmoudi B, et al. Bioaccessibility analysis of toxic metals in consumed rice through an in vitro human digestion model—Comparison of calculated human health risk from raw, cooked and digested rice. <i>Food chemistry</i> . 2019;299:125126. | 389<br>390<br>391 |
| .21 | Pandey G, Madhuri S. Heavy metals causing toxicity in animals and fishes. <i>Research Journal of Animal, Veterinary and Fishery Sciences</i> . 2014;2(2):17-23.                                                                                                                                        | 392<br>393        |
| .22 | Ai H, Wu D, Li C, Hou M. Advances in molecular mechanisms underlying cadmium uptake and translocation in rice. <i>Frontiers in Plant Science</i> . 2022;13:1003953.                                                                                                                                    | 394<br>395        |
| .23 | Monga A, Fulke AB, Dasgupta D. Recent developments in essentiality of trivalent chromium and toxicity of hexavalent chromium: implications on human health and remediation strategies. <i>Journal of Hazardous Materials Advances</i> . 2022;7:100113.                                                 | 396<br>397<br>398 |
| .24 | Kumar P, Goud EL, Devi P, Dey SR, Dwivedi P. Heavy metals: transport in plants and their physiological and toxicological effects. <i>Plant metal and metalloid transporters</i> : Springer; 2022. p. 23-54.                                                                                            | 399<br>400<br>401 |
| .25 | Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. Nickel: Human health and environmental toxicology. <i>International journal of environmental research and public health</i> . 2020;17(3):679.                                                                                                 | 402<br>403<br>404 |
| .26 | Syuhadah N, Rohasliney H. Rice husk as biosorbent: a review. <i>Health and the Environment Journal</i> . 2012;3(1):89-95.                                                                                                                                                                              | 405<br>406        |
| .27 | Chew KW, Chia SR, Yen H-W, Nomanbhay S, Ho Y-C, Show PL. Transformation of biomass waste into sustainable organic fertilizers. <i>Sustainability</i> . 2019;11(8):2266.                                                                                                                                | 407<br>408        |
| .28 | Mohajer R, Salehi MH, Mohammadi J, Emami MH, Azarm T. The status of lead and cadmium in soils of high prevalent gastrointestinal cancer region of Isfahan. <i>J Res Med Sci</i> . 2013;18(3):210-4.                                                                                                    | 409<br>410        |
| .29 | Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. <i>Toxics</i> . 2021;9(3).                                                                                                    | 411<br>412        |
| .30 | Khan S, Cao Q, Zheng YM, Huang YZ. Health Risks of Heavy Metals in Contaminated Soils and Food Crops Irrigated with Wastewater in Beijing, China. <i>Environmental pollution</i> (Barking, Essex : 1987). 2008;152:686-92.                                                                             | 413<br>414<br>415 |
| .31 | Hembrom S, Singh B, Gupta SK, Nema AK. A comprehensive evaluation of heavy metal contamination in foodstuff and associated human health risk: a global perspective. <i>Contemporary environmental issues and challenges in era of climate change</i> . 2020;33-63.                                     | 416<br>417<br>418 |
| .32 | Obiora SC, Chukwu A, Chibuike G, Nwengbu AN. Potentially harmful elements and their health implications in cultivable soils and food crops around lead-zinc mines in Ishiagu, Southeastern Nigeria. <i>Journal of Geochemical Exploration</i> . 2019;204:289-96.                                       | 419<br>420<br>421 |
| .33 | Ghasemi S, Hashemi M, Gholian Aval M, Khanzadi S, Safarian M, Orooji A, et al. Effect of baking methods types on residues of heavy metals in the different breads produced with wheat flour in Iran: A case study of Mashhad. <i>Journal of Chemical Health Risks</i> . 2022;12(1):105-13.             | 422<br>423<br>424 |
| .34 | Basaran B. Comparison of heavy metal levels and health risk assessment of different bread types marketed in Turkey. <i>Journal of Food Composition and Analysis</i> . 2022;108:104443.                                                                                                                 | 425<br>426        |
| .35 | Alam MNE, Hosen MM, Ullah AA, Maksud M, Khan S, Lutfa L, et al. Pollution Characteristics, Source Identification, and Health Risk of Heavy Metals in the Soil-Vegetable System in Two Districts of Bangladesh. <i>Biological Trace Element Research</i> . 2023;1-15.                                   | 427<br>428<br>429 |
| .36 | Guadie A, Yesigat A, Gatew S, Worku A, Liu W, Ajibade FO, et al. Evaluating the health risks of heavy metals from vegetables grown on soil irrigated with untreated and treated wastewater in Arba Minch, Ethiopia. <i>Science of the Total Environment</i> . 2021;761:143302.                         | 430<br>431<br>432 |
| .37 | Roba C, Roşu C, Piştea I, Ozunu A, Baciu C. Heavy metal content in vegetables and fruits cultivated in Baia Mare mining area (Romania) and health risk assessment. <i>Environmental Science and Pollution Research</i> . 2016;23:6062-73.                                                              | 433<br>434<br>435 |
| .38 | Ghaffari SMMM, Payandeh K, Goosheh M. Health Risk Assessment of Some Heavy Metals of Local Rice Cultivars in Khuzestan Province. <i>Journal of Innovation in Food Science &amp; Technology</i> . 2022;14(1).                                                                                           | 436<br>437<br>438 |

- .39 Huang Y, Chen Q, Deng M, Japenga J, Li T, Yang X, et al. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. *Journal of environmental management*. 2018;207:159-68. 439  
440  
441
- .40 Satpathy D, Reddy MV, Dhal SP. Risk assessment of heavy metals contamination in paddy soil, plants, and grains (*Oryza sativa* L.) at the East Coast of India. *BioMed research international*. 2014;2014. 442  
443  
444
- .41 Aendo P, Netvichian R, Thiendedsakul P, Khaodhiar S, Tulayakul P. Carcinogenic risk of Pb, Cd, Ni, and Cr and critical ecological risk of Cd and Cu in soil and groundwater around the municipal solid waste open dump in central Thailand. *Journal of environmental and public health*. 2022;2022. 445  
446  
447
- .42 Sultana MS, Rana S, Yamazaki S, Aono T, Yoshida S. Health risk assessment for carcinogenic and non-carcinogenic heavy metal exposures from vegetables and fruits of Bangladesh. *Cogent Environmental Science*. 2017;3(1):1291107. 448  
449  
450
- .43 Fouladi M, Mohammadi Rouzbahani M, Attar Roshan S, Sabz Alipour S. Health risk assessment of potentially toxic elements in common cultivated rice (*Oryza sativa*) emphasis on environmental pollution. *Toxin Reviews*. 2021;40(4):1019-34. 451  
452  
453
- .44 Cui H, Wen J, Yang L, Wang Q. Spatial distribution of heavy metals in rice grains and human health risk assessment in Hunan Province, China. *Environmental Science and Pollution Research*. 2022;29(55):83126-37. 454  
455  
456
- 457  
458